Jeśli ułamki mają różne mianowniki, to aby je dodać, trzeba je sprowadzić do wspólnego mianownika. Czyli doprowadzić je do takiej postaci, aby wszystkie dodawane czy odejmowane ułamki miały identyczny mianownik. Pokażę ci przykłady, jakich ułamków nie da się dodać tak jak są:
Zobacz 9 odpowiedzi na zadanie: Dlaczego sprowadzamy ułamki do wspólnego mianownika.? Pytania . Wszystkie pytania; Sondy&Ankiety; Kategorie . Szkoła - zapytaj
Czy w dodawaniu ułamków zwykłych i sprowadzaniu do wspólnego mianownika w nim trzeba mnożyć i licznik i mianownik? 2009-09-12 19:12:45; Czy można skracać ułamki zwykłe w dodawaniu? 2010-09-08 17:19:38; Czy przy dodawaniu ułamków zwykłych dodaje się do siebie mianownik? 2012-09-11 16:27:40
cash. mianownik 1. Sprowadzić coś do wspólnego mianownika «potraktować jakieś sprawy, zjawiska jednakowo, nie różnicując ich»: Jak sprowadzić do wspólnego mianownika jakościowo odmienne rodzaje pracy? MP 6-8/1997. Na jakim tle wynikają konflikty w zakładach pracy? Kiedy autorka cytowanego sondażu spróbowała przyczyny konfliktów sprowadzić do wspólnego mianownika, okazało się, że najwięcej badanych upatruje je w sferze błędów organizacji i kierowania. Persp 14/1980. 2. Wspólny mianownik «podobieństwo jakichś rzeczy, problemów, spraw»: Porównuje się często stosunki panujące w wojsku do stosunków panujących w więzieniu. Osobiście nie byłem w więzieniu, ale myślę, że są to dwa oddzielne światy, które mają tylko jeden wspólny mianownik – w obu tych instytucjach nagminnie łamane są prawa człowieka. M. Ciesielski, Wojsko. Wspólnym mianownikiem tych nowel jest fakt, że dotyczą islamu – „rodzimej” religii samego autora. Kultura P 500/1989. Słownik frazeologiczny . 2013. Look at other dictionaries: mianownik — {{/stl 13}}{{stl 8}}rz. mnż IIa, D. a {{/stl 8}}{{stl 20}} {{/stl 20}}{{stl 12}}1. {{/stl 12}}{{stl 8}}jęz. {{/stl 8}}{{stl 7}} przypadek deklinacji polskiej, odpowiadający na pytanie {{/stl 7}}{{stl 8}}kto? co? {{/stl 8}}{{stl 7}}, pełniący w… … Langenscheidt Polski wyjaśnień mianownik — m III, D. a, N. mianownikkiem; lm M. i 1. «pierwszy przypadek w deklinacji, występujący w zdaniu w funkcji podmiotu lub orzecznika (odpowiadający na pytanie: kto? co?); forma wyrazowa tego przypadka; nominatiwus» Rzeczownik użyty w mianowniku. 2 … Słownik języka polskiego wspólny — 1. Mieć z kimś, z czymś coś wspólnego a) «być podobnym do kogoś, do czegoś, odznaczać się jakimiś cechami, które upodabniają, zbliżają, łączą»: Suita op. 25 w swej neobarokowej pastiszowości dowodzi, iż Schönberg miał też coś wspólnego ze… … Słownik frazeologiczny ułamek — m III, D. ułamekmka, N. ułamekmkiem; lm M. ułamekmki 1. mat. «iloraz dwóch liczb naturalnych zapisywanych jedna (licznik) nad drugą (mianownik), oddzielanych poziomą kreską lub zapisywanych bez kreski, oddzielanych przecinkiem od liczb… … Słownik języka polskiego odwrotność — ż V, DCMs. odwrotnośćści, blm rzecz. od odwrotny (zwykle w zn. 1) Odwrotność jakiegoś twierdzenia. ∆ mat. Odwrotność liczby «liczba, której iloczyn przez daną liczbę (nierówną zeru) równa się jedności» ∆ Odwrotność ułamka «w stosunku do liczby… … Słownik języka polskiego synkretyzm — m IV, D. u, Ms. synkretyzmzmie, blm 1. «łączenie w jedną całość różnych, często sprzecznych poglądów filozoficznych, religijnych, społecznych; zespolenie się, skrzyżowanie się jakichkolwiek elementów» Synkretyzm filozoficzny, religijny.… … Słownik języka polskiego Polnische Sprache — Polnisch (język polski) Gesprochen in Polen, als Minderheitensprache: Litauen, Tschechien, Ukraine, Weißrussland, Deutschland, Großbritannien, Frankreich, USA, Kanada, Brasilien, Argentinien, Australien, Irland, Israel … Deutsch Wikipedia Польский язык — Самоназвание: język polski, polszczyzna Страны: Польша, США … Википедия Polnische Grammatik — Dieser Artikel beschreibt die Grammatik der polnischen Sprache unter Einbeziehung einiger sprachgeschichtlicher Anmerkungen und dialektaler Besonderheiten. Das Polnische als westslawische Sprache hat in der Deklination wie die meisten anderen… … Deutsch Wikipedia sprowadzić — 1. Sprowadzić kogoś na złą drogę, na bezdroża «nakłonić kogoś, często własnym przykładem, do niewłaściwego postępowania»: Wacław B. ze zdziwienia i niedowierzenia, aż opadł na fotel. – Więc to ja miałem ją sprowadzić na złą drogę, wykorzystać… … Słownik frazeologiczny
Liczbę mieszaną trzeba zamienić na ułamek niewłaściwy, dopiero potem można sprowadzać do wspólnego zamienić liczbę mieszaną na ułamek niewłaściwy?4 2/3 - mnożymy liczbę całości (4) razy mianownik (3), wynik (4*3=12) dodajemy do licznika (2; 12+2) i otrzymujemy ułamek 14/35 1/7 - mnożymy liczbę całości (5) razy mianownik (7), wynik (5*7=35) dodajemy do licznika (1; 35+1) i otrzymujemy ułamek 36/7Sprowadzanie do wspólnego mianownika musimy wykonać tylko wtedy, gdy dodajemy bądź odejmujemy od siebie ułamki o różnych mianownikach:4 2/3 + 5 1/7 = 14/3 + 36/7 = [teraz musimy sprowadzić do wspólnego mianownika]Najpewniejszym sposobem na znalezienie wspólnego mianownika jest przemnożenie przez siebie obu mianowników (3 * 7 = 21); czasem warto jednak poszukać innej, mniejszej liczby, która będzie wspólnym mianownikiem. W tym wypadku nie ma takiej możliwości i wspólnym mianownikiem jest 3 * 7 = 2114/3 * 7/7 = (14*7)/(3*7) = 98/2136/7 * 3/3 = (36*3)/(7*3) = 108/214 2/3 + 5 1/7 = 14/3 + 36/7 = 98/21 + 108/21 = 206/21 [teraz należałoby wyłączyć jeszcze z ułamka całości] = 9 17/21
Sprowadź do wspólnego mianownika poniższe ułamki: a) \(\dfrac{3}{5}\) oraz \(1\dfrac{2}{7}\) b) \(3\dfrac{5}{9}\) oraz \(7\dfrac{5}{6}\) c) \(2\dfrac{2}{3}\) oraz \(4\dfrac{4}{15}\) d) \(5\dfrac{6}{13}\) oraz \(9\dfrac{1}{2}\) e) \(11\dfrac{5}{12}\) oraz \(\dfrac{3}{5}\) Rozwiązanie Aby sprowadzić ułamek z częścią całkowitą do wspólnego mianownika, postępujemy tak, jakby tej liczby całkowitej nie było, po prostu przepisujemy ją, a ułamek rozszerzamy: a) \(\dfrac{3}{5}\) oraz \(1\dfrac{2}{7}\)Wspólnym mianownikiem będzie \(5\cdot 7=35\): \( \dfrac{3}{5}_{\: / \: \cdot 7}=\dfrac{3\cdot 7}{5\cdot 7}=\dfrac{21}{35}\) \(1\dfrac{2}{7}_{\: / \: \cdot 5}=1\dfrac{2\cdot 5}{7\cdot 5}=1\dfrac{10}{35}\) b) \(3\dfrac{5}{9}\) oraz \(7\dfrac{5}{6}\)Pierwszy mianownik to \(9=3\cdot 3\), drugi to \(6=3\cdot 2\), oznacza to, że wspólnym mianownikiem może być \(18\), czyli iloczyn niepowtarzających się liczb \(3\cdot 3\cdot 2\). \( 3\dfrac{5}{9}_{\: / \: \cdot 2}=3\dfrac{5\cdot 2}{9\cdot 2}=3\dfrac{10}{18}\) \( 7\dfrac{5}{6}_{\: / \: \cdot 3}=7\dfrac{5\cdot 3}{6\cdot 3}=7\dfrac{15}{18}\) c) \(2\dfrac{2}{3}\) oraz \(4\dfrac{4}{15}\)Wspólnym mianownikiem będzie \(15\), więc tylko pierwszy ułamek rozszerzamy: \( 2\dfrac{2}{3}_{\: / \: \cdot 5}=2\dfrac{2\cdot 5}{3\cdot 5}=2\dfrac{10}{15}\) \(4\dfrac{4}{15}\) d) \(5\dfrac{6}{13}\) oraz \(9\dfrac{1}{2}\) Wspólnym mianownikiem będzie \(13\cdot 2 = 26\) \(5\dfrac{6}{13}_{\: / \: \cdot 2}=5\dfrac{6\cdot 2}{13\cdot 2}=5\dfrac{12}{26}\) \(9\dfrac{1}{2}_{\: / \: \cdot 13}=9\dfrac{1\cdot 13}{2\cdot 13}=9\dfrac{13}{26}\) e) \(11\dfrac{5}{12}\) oraz \(\dfrac{3}{5}\)Wspólnym mianownikiem podanych wyrażeń będzie \(12\cdot 5=60\): \(11\dfrac{5}{12}_{\: / \: \cdot 5}=11\dfrac{5\cdot 5}{12\cdot 5}=11\dfrac{25}{60}\) \(\dfrac{3}{5}_{\: / \: \cdot 12}=\dfrac{3\cdot 12}{5\cdot 12}=\dfrac{36}{60}\)Zadanie 1Zadanie 3
jak sprowadzić do wspólnego mianownika